sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(35, base_ring=CyclotomicField(4))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([1,2]))
pari: [g,chi] = znchar(Mod(27,35))
Basic properties
Modulus: | \(35\) | |
Conductor: | \(35\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(4\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 35.f
\(\chi_{35}(13,\cdot)\) \(\chi_{35}(27,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\((22,31)\) → \((i,-1)\)
Values
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\(1\) | \(1\) | \(i\) | \(i\) | \(-1\) | \(-1\) | \(-i\) | \(-1\) | \(1\) | \(-i\) | \(i\) | \(1\) |
Related number fields
Field of values: | \(\Q(\sqrt{-1}) \) |
Fixed field: | 4.4.6125.1 |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{35}(27,\cdot)) = \sum_{r\in \Z/35\Z} \chi_{35}(27,r) e\left(\frac{2r}{35}\right) = 5.0325180498+3.1102672038i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{35}(27,\cdot),\chi_{35}(1,\cdot)) = \sum_{r\in \Z/35\Z} \chi_{35}(27,r) \chi_{35}(1,1-r) = 1 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{35}(27,·))
= \sum_{r \in \Z/35\Z}
\chi_{35}(27,r) e\left(\frac{1 r + 2 r^{-1}}{35}\right)
= 9.06828418+9.06828418i \)