sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(348, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,14,11]))
pari:[g,chi] = znchar(Mod(47,348))
| Modulus: | \(348\) | |
| Conductor: | \(348\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(28\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{348}(11,\cdot)\)
\(\chi_{348}(47,\cdot)\)
\(\chi_{348}(95,\cdot)\)
\(\chi_{348}(119,\cdot)\)
\(\chi_{348}(131,\cdot)\)
\(\chi_{348}(143,\cdot)\)
\(\chi_{348}(155,\cdot)\)
\(\chi_{348}(251,\cdot)\)
\(\chi_{348}(263,\cdot)\)
\(\chi_{348}(275,\cdot)\)
\(\chi_{348}(287,\cdot)\)
\(\chi_{348}(311,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((175,233,205)\) → \((-1,-1,e\left(\frac{11}{28}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(31\) | \(35\) |
| \( \chi_{ 348 }(47, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(-i\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{5}{14}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)