sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(345, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([0,11,42]))
pari:[g,chi] = znchar(Mod(37,345))
\(\chi_{345}(7,\cdot)\)
\(\chi_{345}(28,\cdot)\)
\(\chi_{345}(37,\cdot)\)
\(\chi_{345}(43,\cdot)\)
\(\chi_{345}(67,\cdot)\)
\(\chi_{345}(88,\cdot)\)
\(\chi_{345}(97,\cdot)\)
\(\chi_{345}(103,\cdot)\)
\(\chi_{345}(112,\cdot)\)
\(\chi_{345}(148,\cdot)\)
\(\chi_{345}(157,\cdot)\)
\(\chi_{345}(172,\cdot)\)
\(\chi_{345}(178,\cdot)\)
\(\chi_{345}(217,\cdot)\)
\(\chi_{345}(247,\cdot)\)
\(\chi_{345}(268,\cdot)\)
\(\chi_{345}(283,\cdot)\)
\(\chi_{345}(313,\cdot)\)
\(\chi_{345}(337,\cdot)\)
\(\chi_{345}(343,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((116,277,166)\) → \((1,i,e\left(\frac{21}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 345 }(37, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{44}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(e\left(\frac{21}{44}\right)\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{5}{44}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{41}{44}\right)\) | \(e\left(\frac{9}{11}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)