sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(344, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,21,26]))
pari:[g,chi] = znchar(Mod(187,344))
| Modulus: | \(344\) | |
| Conductor: | \(344\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{344}(67,\cdot)\)
\(\chi_{344}(83,\cdot)\)
\(\chi_{344}(99,\cdot)\)
\(\chi_{344}(139,\cdot)\)
\(\chi_{344}(187,\cdot)\)
\(\chi_{344}(195,\cdot)\)
\(\chi_{344}(203,\cdot)\)
\(\chi_{344}(267,\cdot)\)
\(\chi_{344}(275,\cdot)\)
\(\chi_{344}(283,\cdot)\)
\(\chi_{344}(315,\cdot)\)
\(\chi_{344}(339,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((87,173,89)\) → \((-1,-1,e\left(\frac{13}{21}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(21\) |
| \( \chi_{ 344 }(187, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{11}{14}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)