sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(343, base_ring=CyclotomicField(294))
M = H._module
chi = DirichletCharacter(H, M([208]))
pari:[g,chi] = znchar(Mod(11,343))
| Modulus: | \(343\) | |
| Conductor: | \(343\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(147\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{343}(2,\cdot)\)
\(\chi_{343}(4,\cdot)\)
\(\chi_{343}(9,\cdot)\)
\(\chi_{343}(11,\cdot)\)
\(\chi_{343}(16,\cdot)\)
\(\chi_{343}(23,\cdot)\)
\(\chi_{343}(25,\cdot)\)
\(\chi_{343}(32,\cdot)\)
\(\chi_{343}(37,\cdot)\)
\(\chi_{343}(39,\cdot)\)
\(\chi_{343}(44,\cdot)\)
\(\chi_{343}(46,\cdot)\)
\(\chi_{343}(51,\cdot)\)
\(\chi_{343}(53,\cdot)\)
\(\chi_{343}(58,\cdot)\)
\(\chi_{343}(60,\cdot)\)
\(\chi_{343}(65,\cdot)\)
\(\chi_{343}(72,\cdot)\)
\(\chi_{343}(74,\cdot)\)
\(\chi_{343}(81,\cdot)\)
\(\chi_{343}(86,\cdot)\)
\(\chi_{343}(88,\cdot)\)
\(\chi_{343}(93,\cdot)\)
\(\chi_{343}(95,\cdot)\)
\(\chi_{343}(100,\cdot)\)
\(\chi_{343}(102,\cdot)\)
\(\chi_{343}(107,\cdot)\)
\(\chi_{343}(109,\cdot)\)
\(\chi_{343}(114,\cdot)\)
\(\chi_{343}(121,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{104}{147}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 343 }(11, a) \) |
\(1\) | \(1\) | \(e\left(\frac{37}{147}\right)\) | \(e\left(\frac{104}{147}\right)\) | \(e\left(\frac{74}{147}\right)\) | \(e\left(\frac{76}{147}\right)\) | \(e\left(\frac{47}{49}\right)\) | \(e\left(\frac{37}{49}\right)\) | \(e\left(\frac{61}{147}\right)\) | \(e\left(\frac{113}{147}\right)\) | \(e\left(\frac{23}{147}\right)\) | \(e\left(\frac{31}{147}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)