Properties

Label 34272.bcs
Modulus $34272$
Conductor $288$
Order $24$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(34272, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,15,16,0,0])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(1429,34272)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(34272\)
Conductor: \(288\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 288.bc
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.18351423083070806589199715754737431920771072.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(13\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{34272}(1429,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{34272}(7141,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{34272}(9997,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{34272}(15709,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{34272}(18565,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{34272}(24277,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{34272}(27133,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{34272}(32845,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{11}{12}\right)\)