sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(34272, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,3,16,0,3]))
pari:[g,chi] = znchar(Mod(6469,34272))
\(\chi_{34272}(6469,\cdot)\)
\(\chi_{34272}(11677,\cdot)\)
\(\chi_{34272}(22261,\cdot)\)
\(\chi_{34272}(22765,\cdot)\)
\(\chi_{34272}(23101,\cdot)\)
\(\chi_{34272}(29317,\cdot)\)
\(\chi_{34272}(33685,\cdot)\)
\(\chi_{34272}(34189,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,29989,3809,14689,14113)\) → \((1,e\left(\frac{1}{8}\right),e\left(\frac{2}{3}\right),1,e\left(\frac{1}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 34272 }(6469, a) \) |
\(1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(i\) | \(e\left(\frac{11}{24}\right)\) |
sage:chi.jacobi_sum(n)