![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(34272, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,9,8,0,6]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(34272, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,9,8,0,6]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(31837,34272))
        pari:[g,chi] = znchar(Mod(31837,34272))
         
     
    
  \(\chi_{34272}(5461,\cdot)\)
  \(\chi_{34272}(8989,\cdot)\)
  \(\chi_{34272}(11173,\cdot)\)
  \(\chi_{34272}(14701,\cdot)\)
  \(\chi_{34272}(22597,\cdot)\)
  \(\chi_{34272}(26125,\cdot)\)
  \(\chi_{34272}(28309,\cdot)\)
  \(\chi_{34272}(31837,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((2143,29989,3809,14689,14113)\) → \((1,e\left(\frac{3}{8}\right),e\left(\frac{1}{3}\right),1,i)\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) | 
    
    
      | \( \chi_{ 34272 }(31837, a) \) | \(1\) | \(1\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{1}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)