sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(34272, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([12,21,0,4,0]))
pari:[g,chi] = znchar(Mod(29683,34272))
\(\chi_{34272}(1531,\cdot)\)
\(\chi_{34272}(3979,\cdot)\)
\(\chi_{34272}(10099,\cdot)\)
\(\chi_{34272}(12547,\cdot)\)
\(\chi_{34272}(18667,\cdot)\)
\(\chi_{34272}(21115,\cdot)\)
\(\chi_{34272}(27235,\cdot)\)
\(\chi_{34272}(29683,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,29989,3809,14689,14113)\) → \((-1,e\left(\frac{7}{8}\right),1,e\left(\frac{1}{6}\right),1)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 34272 }(29683, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(-i\) |
sage:chi.jacobi_sum(n)