sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(34272, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([0,2,0,8,9]))
pari:[g,chi] = znchar(Mod(21349,34272))
\(\chi_{34272}(1693,\cdot)\)
\(\chi_{34272}(8749,\cdot)\)
\(\chi_{34272}(21349,\cdot)\)
\(\chi_{34272}(24373,\cdot)\)
\(\chi_{34272}(24877,\cdot)\)
\(\chi_{34272}(26389,\cdot)\)
\(\chi_{34272}(29413,\cdot)\)
\(\chi_{34272}(31933,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,29989,3809,14689,14113)\) → \((1,e\left(\frac{1}{8}\right),1,-1,e\left(\frac{9}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 34272 }(21349, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(i\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) |
sage:chi.jacobi_sum(n)