Properties

Label 34272.15313
Modulus $34272$
Conductor $8568$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(34272, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([0,6,4,8,3]))
 
Copy content pari:[g,chi] = znchar(Mod(15313,34272))
 

Basic properties

Modulus: \(34272\)
Conductor: \(8568\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{8568}(2461,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 34272.qu

\(\chi_{34272}(3217,\cdot)\) \(\chi_{34272}(12049,\cdot)\) \(\chi_{34272}(15313,\cdot)\) \(\chi_{34272}(34225,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

\((2143,29989,3809,14689,14113)\) → \((1,-1,e\left(\frac{1}{3}\right),e\left(\frac{2}{3}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 34272 }(15313, a) \) \(1\)\(1\)\(-i\)\(i\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(-i\)\(-1\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{5}{12}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 34272 }(15313,a) \;\) at \(\;a = \) e.g. 2