sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(34272, base_ring=CyclotomicField(24))
M = H._module
chi = DirichletCharacter(H, M([0,12,4,20,15]))
pari:[g,chi] = znchar(Mod(14033,34272))
\(\chi_{34272}(689,\cdot)\)
\(\chi_{34272}(2705,\cdot)\)
\(\chi_{34272}(3953,\cdot)\)
\(\chi_{34272}(5969,\cdot)\)
\(\chi_{34272}(8753,\cdot)\)
\(\chi_{34272}(10769,\cdot)\)
\(\chi_{34272}(12017,\cdot)\)
\(\chi_{34272}(14033,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2143,29989,3809,14689,14113)\) → \((1,-1,e\left(\frac{1}{6}\right),e\left(\frac{5}{6}\right),e\left(\frac{5}{8}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 34272 }(14033, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{8}\right)\) | \(i\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) |
sage:chi.jacobi_sum(n)