Properties

Label 3400.41
Modulus $3400$
Conductor $425$
Order $80$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3400, base_ring=CyclotomicField(80)) M = H._module chi = DirichletCharacter(H, M([0,0,16,55]))
 
Copy content pari:[g,chi] = znchar(Mod(41,3400))
 

Basic properties

Modulus: \(3400\)
Conductor: \(425\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(80\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{425}(41,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3400.fi

\(\chi_{3400}(41,\cdot)\) \(\chi_{3400}(241,\cdot)\) \(\chi_{3400}(481,\cdot)\) \(\chi_{3400}(521,\cdot)\) \(\chi_{3400}(641,\cdot)\) \(\chi_{3400}(721,\cdot)\) \(\chi_{3400}(881,\cdot)\) \(\chi_{3400}(921,\cdot)\) \(\chi_{3400}(1081,\cdot)\) \(\chi_{3400}(1161,\cdot)\) \(\chi_{3400}(1281,\cdot)\) \(\chi_{3400}(1321,\cdot)\) \(\chi_{3400}(1561,\cdot)\) \(\chi_{3400}(1761,\cdot)\) \(\chi_{3400}(1841,\cdot)\) \(\chi_{3400}(1881,\cdot)\) \(\chi_{3400}(1961,\cdot)\) \(\chi_{3400}(2081,\cdot)\) \(\chi_{3400}(2241,\cdot)\) \(\chi_{3400}(2281,\cdot)\) \(\chi_{3400}(2441,\cdot)\) \(\chi_{3400}(2521,\cdot)\) \(\chi_{3400}(2561,\cdot)\) \(\chi_{3400}(2641,\cdot)\) \(\chi_{3400}(2681,\cdot)\) \(\chi_{3400}(2761,\cdot)\) \(\chi_{3400}(2921,\cdot)\) \(\chi_{3400}(2961,\cdot)\) \(\chi_{3400}(3121,\cdot)\) \(\chi_{3400}(3241,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

Values on generators

\((2551,1701,2177,1601)\) → \((1,1,e\left(\frac{1}{5}\right),e\left(\frac{11}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3400 }(41, a) \) \(-1\)\(1\)\(e\left(\frac{7}{80}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{7}{40}\right)\)\(e\left(\frac{1}{80}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{9}{40}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{41}{80}\right)\)\(e\left(\frac{21}{80}\right)\)\(e\left(\frac{27}{80}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3400 }(41,a) \;\) at \(\;a = \) e.g. 2