sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3400, base_ring=CyclotomicField(80))
M = H._module
chi = DirichletCharacter(H, M([0,40,68,5]))
pari:[g,chi] = znchar(Mod(1397,3400))
Modulus: | \(3400\) | |
Conductor: | \(3400\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(80\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3400}(37,\cdot)\)
\(\chi_{3400}(277,\cdot)\)
\(\chi_{3400}(333,\cdot)\)
\(\chi_{3400}(437,\cdot)\)
\(\chi_{3400}(453,\cdot)\)
\(\chi_{3400}(533,\cdot)\)
\(\chi_{3400}(653,\cdot)\)
\(\chi_{3400}(677,\cdot)\)
\(\chi_{3400}(717,\cdot)\)
\(\chi_{3400}(1013,\cdot)\)
\(\chi_{3400}(1117,\cdot)\)
\(\chi_{3400}(1133,\cdot)\)
\(\chi_{3400}(1213,\cdot)\)
\(\chi_{3400}(1333,\cdot)\)
\(\chi_{3400}(1397,\cdot)\)
\(\chi_{3400}(1637,\cdot)\)
\(\chi_{3400}(1797,\cdot)\)
\(\chi_{3400}(1813,\cdot)\)
\(\chi_{3400}(2013,\cdot)\)
\(\chi_{3400}(2037,\cdot)\)
\(\chi_{3400}(2077,\cdot)\)
\(\chi_{3400}(2317,\cdot)\)
\(\chi_{3400}(2373,\cdot)\)
\(\chi_{3400}(2477,\cdot)\)
\(\chi_{3400}(2573,\cdot)\)
\(\chi_{3400}(2717,\cdot)\)
\(\chi_{3400}(2997,\cdot)\)
\(\chi_{3400}(3053,\cdot)\)
\(\chi_{3400}(3173,\cdot)\)
\(\chi_{3400}(3253,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2551,1701,2177,1601)\) → \((1,-1,e\left(\frac{17}{20}\right),e\left(\frac{1}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(19\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 3400 }(1397, a) \) |
\(1\) | \(1\) | \(e\left(\frac{41}{80}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{40}\right)\) | \(e\left(\frac{43}{80}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{27}{40}\right)\) | \(e\left(\frac{9}{20}\right)\) | \(e\left(\frac{23}{80}\right)\) | \(e\left(\frac{43}{80}\right)\) | \(e\left(\frac{1}{80}\right)\) |
sage:chi.jacobi_sum(n)