Properties

Label 33957.ja
Modulus $33957$
Conductor $11319$
Order $1470$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(33957, base_ring=CyclotomicField(1470)) M = H._module chi = DirichletCharacter(H, M([735,125,1323])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(17,33957)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(33957\)
Conductor: \(11319\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1470\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 11319.dr
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{735})$
Fixed field: Number field defined by a degree 1470 polynomial (not computed)

First 13 of 336 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(13\) \(16\) \(17\) \(19\) \(20\)
\(\chi_{33957}(17,\cdot)\) \(-1\) \(1\) \(e\left(\frac{659}{735}\right)\) \(e\left(\frac{583}{735}\right)\) \(e\left(\frac{416}{735}\right)\) \(e\left(\frac{169}{245}\right)\) \(e\left(\frac{68}{147}\right)\) \(e\left(\frac{33}{245}\right)\) \(e\left(\frac{431}{735}\right)\) \(e\left(\frac{1067}{1470}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{88}{245}\right)\)
\(\chi_{33957}(206,\cdot)\) \(-1\) \(1\) \(e\left(\frac{488}{735}\right)\) \(e\left(\frac{241}{735}\right)\) \(e\left(\frac{617}{735}\right)\) \(e\left(\frac{243}{245}\right)\) \(e\left(\frac{74}{147}\right)\) \(e\left(\frac{46}{245}\right)\) \(e\left(\frac{482}{735}\right)\) \(e\left(\frac{1079}{1470}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{41}{245}\right)\)
\(\chi_{33957}(332,\cdot)\) \(-1\) \(1\) \(e\left(\frac{626}{735}\right)\) \(e\left(\frac{517}{735}\right)\) \(e\left(\frac{674}{735}\right)\) \(e\left(\frac{136}{245}\right)\) \(e\left(\frac{113}{147}\right)\) \(e\left(\frac{57}{245}\right)\) \(e\left(\frac{299}{735}\right)\) \(e\left(\frac{863}{1470}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{152}{245}\right)\)
\(\chi_{33957}(404,\cdot)\) \(-1\) \(1\) \(e\left(\frac{253}{735}\right)\) \(e\left(\frac{506}{735}\right)\) \(e\left(\frac{472}{735}\right)\) \(e\left(\frac{8}{245}\right)\) \(e\left(\frac{145}{147}\right)\) \(e\left(\frac{61}{245}\right)\) \(e\left(\frac{277}{735}\right)\) \(e\left(\frac{829}{1470}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{81}{245}\right)\)
\(\chi_{33957}(458,\cdot)\) \(-1\) \(1\) \(e\left(\frac{407}{735}\right)\) \(e\left(\frac{79}{735}\right)\) \(e\left(\frac{248}{735}\right)\) \(e\left(\frac{162}{245}\right)\) \(e\left(\frac{131}{147}\right)\) \(e\left(\frac{194}{245}\right)\) \(e\left(\frac{158}{735}\right)\) \(e\left(\frac{311}{1470}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{109}{245}\right)\)
\(\chi_{33957}(530,\cdot)\) \(-1\) \(1\) \(e\left(\frac{256}{735}\right)\) \(e\left(\frac{512}{735}\right)\) \(e\left(\frac{649}{735}\right)\) \(e\left(\frac{11}{245}\right)\) \(e\left(\frac{34}{147}\right)\) \(e\left(\frac{237}{245}\right)\) \(e\left(\frac{289}{735}\right)\) \(e\left(\frac{313}{1470}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{142}{245}\right)\)
\(\chi_{33957}(710,\cdot)\) \(-1\) \(1\) \(e\left(\frac{74}{735}\right)\) \(e\left(\frac{148}{735}\right)\) \(e\left(\frac{446}{735}\right)\) \(e\left(\frac{74}{245}\right)\) \(e\left(\frac{104}{147}\right)\) \(e\left(\frac{13}{245}\right)\) \(e\left(\frac{296}{735}\right)\) \(e\left(\frac{257}{1470}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{198}{245}\right)\)
\(\chi_{33957}(899,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{735}\right)\) \(e\left(\frac{16}{735}\right)\) \(e\left(\frac{227}{735}\right)\) \(e\left(\frac{8}{245}\right)\) \(e\left(\frac{47}{147}\right)\) \(e\left(\frac{61}{245}\right)\) \(e\left(\frac{32}{735}\right)\) \(e\left(\frac{1319}{1470}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{81}{245}\right)\)
\(\chi_{33957}(908,\cdot)\) \(-1\) \(1\) \(e\left(\frac{664}{735}\right)\) \(e\left(\frac{593}{735}\right)\) \(e\left(\frac{466}{735}\right)\) \(e\left(\frac{174}{245}\right)\) \(e\left(\frac{79}{147}\right)\) \(e\left(\frac{163}{245}\right)\) \(e\left(\frac{451}{735}\right)\) \(e\left(\frac{697}{1470}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{108}{245}\right)\)
\(\chi_{33957}(1025,\cdot)\) \(-1\) \(1\) \(e\left(\frac{461}{735}\right)\) \(e\left(\frac{187}{735}\right)\) \(e\left(\frac{494}{735}\right)\) \(e\left(\frac{216}{245}\right)\) \(e\left(\frac{44}{147}\right)\) \(e\left(\frac{177}{245}\right)\) \(e\left(\frac{374}{735}\right)\) \(e\left(\frac{1313}{1470}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{227}{245}\right)\)
\(\chi_{33957}(1151,\cdot)\) \(-1\) \(1\) \(e\left(\frac{557}{735}\right)\) \(e\left(\frac{379}{735}\right)\) \(e\left(\frac{278}{735}\right)\) \(e\left(\frac{67}{245}\right)\) \(e\left(\frac{20}{147}\right)\) \(e\left(\frac{174}{245}\right)\) \(e\left(\frac{23}{735}\right)\) \(e\left(\frac{971}{1470}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{219}{245}\right)\)
\(\chi_{33957}(1223,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{735}\right)\) \(e\left(\frac{62}{735}\right)\) \(e\left(\frac{604}{735}\right)\) \(e\left(\frac{31}{245}\right)\) \(e\left(\frac{127}{147}\right)\) \(e\left(\frac{22}{245}\right)\) \(e\left(\frac{124}{735}\right)\) \(e\left(\frac{793}{1470}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{222}{245}\right)\)
\(\chi_{33957}(1349,\cdot)\) \(-1\) \(1\) \(e\left(\frac{307}{735}\right)\) \(e\left(\frac{614}{735}\right)\) \(e\left(\frac{718}{735}\right)\) \(e\left(\frac{62}{245}\right)\) \(e\left(\frac{58}{147}\right)\) \(e\left(\frac{44}{245}\right)\) \(e\left(\frac{493}{735}\right)\) \(e\left(\frac{361}{1470}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{199}{245}\right)\)