Properties

Label 33957.9280
Modulus $33957$
Conductor $77$
Order $30$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(33957, base_ring=CyclotomicField(30)) M = H._module chi = DirichletCharacter(H, M([0,25,21]))
 
Copy content pari:[g,chi] = znchar(Mod(9280,33957))
 

Basic properties

Modulus: \(33957\)
Conductor: \(77\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(30\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{77}(40,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 33957.cs

\(\chi_{33957}(19,\cdot)\) \(\chi_{33957}(325,\cdot)\) \(\chi_{33957}(3412,\cdot)\) \(\chi_{33957}(9280,\cdot)\) \(\chi_{33957}(15760,\cdot)\) \(\chi_{33957}(18541,\cdot)\) \(\chi_{33957}(21628,\cdot)\) \(\chi_{33957}(25021,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: \(\Q(\zeta_{77})^+\)

Values on generators

\((18866,14752,24697)\) → \((1,e\left(\frac{5}{6}\right),e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 33957 }(9280, a) \) \(1\)\(1\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{29}{30}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{7}{15}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{7}{10}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 33957 }(9280,a) \;\) at \(\;a = \) e.g. 2