Properties

Label 33957.9133
Modulus $33957$
Conductor $4851$
Order $210$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(33957, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([140,25,168]))
 
Copy content pari:[g,chi] = znchar(Mod(9133,33957))
 

Basic properties

Modulus: \(33957\)
Conductor: \(4851\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4851}(2203,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 33957.ft

\(\chi_{33957}(31,\cdot)\) \(\chi_{33957}(313,\cdot)\) \(\chi_{33957}(2236,\cdot)\) \(\chi_{33957}(2677,\cdot)\) \(\chi_{33957}(3118,\cdot)\) \(\chi_{33957}(4282,\cdot)\) \(\chi_{33957}(4723,\cdot)\) \(\chi_{33957}(4882,\cdot)\) \(\chi_{33957}(6928,\cdot)\) \(\chi_{33957}(7087,\cdot)\) \(\chi_{33957}(7969,\cdot)\) \(\chi_{33957}(9133,\cdot)\) \(\chi_{33957}(9574,\cdot)\) \(\chi_{33957}(9733,\cdot)\) \(\chi_{33957}(10015,\cdot)\) \(\chi_{33957}(11779,\cdot)\) \(\chi_{33957}(11938,\cdot)\) \(\chi_{33957}(12379,\cdot)\) \(\chi_{33957}(12820,\cdot)\) \(\chi_{33957}(13984,\cdot)\) \(\chi_{33957}(14584,\cdot)\) \(\chi_{33957}(14866,\cdot)\) \(\chi_{33957}(16630,\cdot)\) \(\chi_{33957}(17230,\cdot)\) \(\chi_{33957}(17671,\cdot)\) \(\chi_{33957}(18835,\cdot)\) \(\chi_{33957}(19276,\cdot)\) \(\chi_{33957}(19435,\cdot)\) \(\chi_{33957}(19717,\cdot)\) \(\chi_{33957}(21481,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((18866,14752,24697)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{5}{42}\right),e\left(\frac{4}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 33957 }(9133, a) \) \(-1\)\(1\)\(e\left(\frac{59}{105}\right)\)\(e\left(\frac{13}{105}\right)\)\(e\left(\frac{69}{70}\right)\)\(e\left(\frac{24}{35}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{13}{210}\right)\)\(e\left(\frac{26}{105}\right)\)\(e\left(\frac{37}{210}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{23}{210}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 33957 }(9133,a) \;\) at \(\;a = \) e.g. 2