sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33957, base_ring=CyclotomicField(1470))
M = H._module
chi = DirichletCharacter(H, M([245,900,1323]))
pari:[g,chi] = znchar(Mod(281,33957))
| Modulus: | \(33957\) | |
| Conductor: | \(33957\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(1470\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{33957}(29,\cdot)\)
\(\chi_{33957}(239,\cdot)\)
\(\chi_{33957}(281,\cdot)\)
\(\chi_{33957}(365,\cdot)\)
\(\chi_{33957}(470,\cdot)\)
\(\chi_{33957}(596,\cdot)\)
\(\chi_{33957}(722,\cdot)\)
\(\chi_{33957}(743,\cdot)\)
\(\chi_{33957}(974,\cdot)\)
\(\chi_{33957}(1058,\cdot)\)
\(\chi_{33957}(1163,\cdot)\)
\(\chi_{33957}(1184,\cdot)\)
\(\chi_{33957}(1289,\cdot)\)
\(\chi_{33957}(1415,\cdot)\)
\(\chi_{33957}(1436,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((18866,14752,24697)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{30}{49}\right),e\left(\frac{9}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 33957 }(281, a) \) |
\(1\) | \(1\) | \(e\left(\frac{619}{735}\right)\) | \(e\left(\frac{503}{735}\right)\) | \(e\left(\frac{277}{1470}\right)\) | \(e\left(\frac{129}{245}\right)\) | \(e\left(\frac{3}{98}\right)\) | \(e\left(\frac{1063}{1470}\right)\) | \(e\left(\frac{271}{735}\right)\) | \(e\left(\frac{222}{245}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{1283}{1470}\right)\) |
sage:chi.jacobi_sum(n)