sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3381, base_ring=CyclotomicField(154))
M = H._module
chi = DirichletCharacter(H, M([77,132,42]))
pari:[g,chi] = znchar(Mod(8,3381))
| Modulus: | \(3381\) | |
| Conductor: | \(3381\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(154\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3381}(8,\cdot)\)
\(\chi_{3381}(29,\cdot)\)
\(\chi_{3381}(71,\cdot)\)
\(\chi_{3381}(239,\cdot)\)
\(\chi_{3381}(302,\cdot)\)
\(\chi_{3381}(386,\cdot)\)
\(\chi_{3381}(407,\cdot)\)
\(\chi_{3381}(449,\cdot)\)
\(\chi_{3381}(512,\cdot)\)
\(\chi_{3381}(533,\cdot)\)
\(\chi_{3381}(554,\cdot)\)
\(\chi_{3381}(680,\cdot)\)
\(\chi_{3381}(722,\cdot)\)
\(\chi_{3381}(869,\cdot)\)
\(\chi_{3381}(890,\cdot)\)
\(\chi_{3381}(974,\cdot)\)
\(\chi_{3381}(995,\cdot)\)
\(\chi_{3381}(1016,\cdot)\)
\(\chi_{3381}(1037,\cdot)\)
\(\chi_{3381}(1163,\cdot)\)
\(\chi_{3381}(1205,\cdot)\)
\(\chi_{3381}(1268,\cdot)\)
\(\chi_{3381}(1352,\cdot)\)
\(\chi_{3381}(1415,\cdot)\)
\(\chi_{3381}(1457,\cdot)\)
\(\chi_{3381}(1478,\cdot)\)
\(\chi_{3381}(1499,\cdot)\)
\(\chi_{3381}(1646,\cdot)\)
\(\chi_{3381}(1688,\cdot)\)
\(\chi_{3381}(1751,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2255,346,442)\) → \((-1,e\left(\frac{6}{7}\right),e\left(\frac{3}{11}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
| \( \chi_{ 3381 }(8, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{51}{154}\right)\) | \(e\left(\frac{51}{77}\right)\) | \(e\left(\frac{97}{154}\right)\) | \(e\left(\frac{153}{154}\right)\) | \(e\left(\frac{74}{77}\right)\) | \(e\left(\frac{37}{154}\right)\) | \(e\left(\frac{8}{77}\right)\) | \(e\left(\frac{25}{77}\right)\) | \(e\left(\frac{129}{154}\right)\) | \(e\left(\frac{1}{11}\right)\) |
sage:chi.jacobi_sum(n)