sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3381, base_ring=CyclotomicField(462))
M = H._module
chi = DirichletCharacter(H, M([231,220,441]))
pari:[g,chi] = znchar(Mod(359,3381))
Modulus: | \(3381\) | |
Conductor: | \(3381\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(462\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3381}(11,\cdot)\)
\(\chi_{3381}(44,\cdot)\)
\(\chi_{3381}(53,\cdot)\)
\(\chi_{3381}(65,\cdot)\)
\(\chi_{3381}(74,\cdot)\)
\(\chi_{3381}(86,\cdot)\)
\(\chi_{3381}(107,\cdot)\)
\(\chi_{3381}(149,\cdot)\)
\(\chi_{3381}(158,\cdot)\)
\(\chi_{3381}(191,\cdot)\)
\(\chi_{3381}(212,\cdot)\)
\(\chi_{3381}(221,\cdot)\)
\(\chi_{3381}(296,\cdot)\)
\(\chi_{3381}(359,\cdot)\)
\(\chi_{3381}(389,\cdot)\)
\(\chi_{3381}(401,\cdot)\)
\(\chi_{3381}(431,\cdot)\)
\(\chi_{3381}(452,\cdot)\)
\(\chi_{3381}(494,\cdot)\)
\(\chi_{3381}(527,\cdot)\)
\(\chi_{3381}(536,\cdot)\)
\(\chi_{3381}(548,\cdot)\)
\(\chi_{3381}(590,\cdot)\)
\(\chi_{3381}(632,\cdot)\)
\(\chi_{3381}(641,\cdot)\)
\(\chi_{3381}(674,\cdot)\)
\(\chi_{3381}(695,\cdot)\)
\(\chi_{3381}(746,\cdot)\)
\(\chi_{3381}(779,\cdot)\)
\(\chi_{3381}(842,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2255,346,442)\) → \((-1,e\left(\frac{10}{21}\right),e\left(\frac{21}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 3381 }(359, a) \) |
\(1\) | \(1\) | \(e\left(\frac{365}{462}\right)\) | \(e\left(\frac{134}{231}\right)\) | \(e\left(\frac{61}{231}\right)\) | \(e\left(\frac{57}{154}\right)\) | \(e\left(\frac{25}{462}\right)\) | \(e\left(\frac{32}{231}\right)\) | \(e\left(\frac{6}{77}\right)\) | \(e\left(\frac{37}{231}\right)\) | \(e\left(\frac{20}{231}\right)\) | \(e\left(\frac{65}{66}\right)\) |
sage:chi.jacobi_sum(n)