Properties

Label 3381.1009
Modulus $3381$
Conductor $1127$
Order $154$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3381, base_ring=CyclotomicField(154)) M = H._module chi = DirichletCharacter(H, M([0,66,35]))
 
Copy content pari:[g,chi] = znchar(Mod(1009,3381))
 

Basic properties

Modulus: \(3381\)
Conductor: \(1127\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(154\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1127}(1009,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3381.cb

\(\chi_{3381}(43,\cdot)\) \(\chi_{3381}(106,\cdot)\) \(\chi_{3381}(274,\cdot)\) \(\chi_{3381}(316,\cdot)\) \(\chi_{3381}(337,\cdot)\) \(\chi_{3381}(379,\cdot)\) \(\chi_{3381}(421,\cdot)\) \(\chi_{3381}(526,\cdot)\) \(\chi_{3381}(631,\cdot)\) \(\chi_{3381}(757,\cdot)\) \(\chi_{3381}(778,\cdot)\) \(\chi_{3381}(799,\cdot)\) \(\chi_{3381}(820,\cdot)\) \(\chi_{3381}(862,\cdot)\) \(\chi_{3381}(904,\cdot)\) \(\chi_{3381}(925,\cdot)\) \(\chi_{3381}(1009,\cdot)\) \(\chi_{3381}(1072,\cdot)\) \(\chi_{3381}(1114,\cdot)\) \(\chi_{3381}(1240,\cdot)\) \(\chi_{3381}(1261,\cdot)\) \(\chi_{3381}(1282,\cdot)\) \(\chi_{3381}(1303,\cdot)\) \(\chi_{3381}(1345,\cdot)\) \(\chi_{3381}(1387,\cdot)\) \(\chi_{3381}(1408,\cdot)\) \(\chi_{3381}(1492,\cdot)\) \(\chi_{3381}(1555,\cdot)\) \(\chi_{3381}(1597,\cdot)\) \(\chi_{3381}(1723,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{77})$
Fixed field: Number field defined by a degree 154 polynomial (not computed)

Values on generators

\((2255,346,442)\) → \((1,e\left(\frac{3}{7}\right),e\left(\frac{5}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 3381 }(1009, a) \) \(-1\)\(1\)\(e\left(\frac{46}{77}\right)\)\(e\left(\frac{15}{77}\right)\)\(e\left(\frac{101}{154}\right)\)\(e\left(\frac{61}{77}\right)\)\(e\left(\frac{39}{154}\right)\)\(e\left(\frac{29}{154}\right)\)\(e\left(\frac{25}{77}\right)\)\(e\left(\frac{30}{77}\right)\)\(e\left(\frac{47}{154}\right)\)\(e\left(\frac{9}{22}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3381 }(1009,a) \;\) at \(\;a = \) e.g. 2