sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(336, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,3,2,2]))
pari:[g,chi] = znchar(Mod(83,336))
| Modulus: | \(336\) | |
| Conductor: | \(336\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(4\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{336}(83,\cdot)\)
\(\chi_{336}(251,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((127,85,113,241)\) → \((-1,-i,-1,-1)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
| \( \chi_{ 336 }(83, a) \) |
\(-1\) | \(1\) | \(-i\) | \(-i\) | \(-i\) | \(1\) | \(i\) | \(-1\) | \(-1\) | \(-i\) | \(1\) | \(-i\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)