sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3328, base_ring=CyclotomicField(192))
M = H._module
chi = DirichletCharacter(H, M([0,111,32]))
pari:[g,chi] = znchar(Mod(693,3328))
Modulus: | \(3328\) | |
Conductor: | \(3328\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(192\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3328}(69,\cdot)\)
\(\chi_{3328}(101,\cdot)\)
\(\chi_{3328}(173,\cdot)\)
\(\chi_{3328}(205,\cdot)\)
\(\chi_{3328}(277,\cdot)\)
\(\chi_{3328}(309,\cdot)\)
\(\chi_{3328}(381,\cdot)\)
\(\chi_{3328}(413,\cdot)\)
\(\chi_{3328}(485,\cdot)\)
\(\chi_{3328}(517,\cdot)\)
\(\chi_{3328}(589,\cdot)\)
\(\chi_{3328}(621,\cdot)\)
\(\chi_{3328}(693,\cdot)\)
\(\chi_{3328}(725,\cdot)\)
\(\chi_{3328}(797,\cdot)\)
\(\chi_{3328}(829,\cdot)\)
\(\chi_{3328}(901,\cdot)\)
\(\chi_{3328}(933,\cdot)\)
\(\chi_{3328}(1005,\cdot)\)
\(\chi_{3328}(1037,\cdot)\)
\(\chi_{3328}(1109,\cdot)\)
\(\chi_{3328}(1141,\cdot)\)
\(\chi_{3328}(1213,\cdot)\)
\(\chi_{3328}(1245,\cdot)\)
\(\chi_{3328}(1317,\cdot)\)
\(\chi_{3328}(1349,\cdot)\)
\(\chi_{3328}(1421,\cdot)\)
\(\chi_{3328}(1453,\cdot)\)
\(\chi_{3328}(1525,\cdot)\)
\(\chi_{3328}(1557,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1535,261,769)\) → \((1,e\left(\frac{37}{64}\right),e\left(\frac{1}{6}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 3328 }(693, a) \) |
\(1\) | \(1\) | \(e\left(\frac{173}{192}\right)\) | \(e\left(\frac{5}{64}\right)\) | \(e\left(\frac{59}{96}\right)\) | \(e\left(\frac{77}{96}\right)\) | \(e\left(\frac{59}{192}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{25}{192}\right)\) | \(e\left(\frac{33}{64}\right)\) | \(e\left(\frac{73}{96}\right)\) |
sage:chi.jacobi_sum(n)