![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3328, base_ring=CyclotomicField(192))
M = H._module
chi = DirichletCharacter(H, M([96,111,176]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3328, base_ring=CyclotomicField(192))
M = H._module
chi = DirichletCharacter(H, M([96,111,176]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(1099,3328))
        pari:[g,chi] = znchar(Mod(1099,3328))
         
     
    
  
   | Modulus: | \(3328\) |  | 
   | Conductor: | \(3328\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(192\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{3328}(11,\cdot)\)
  \(\chi_{3328}(19,\cdot)\)
  \(\chi_{3328}(59,\cdot)\)
  \(\chi_{3328}(67,\cdot)\)
  \(\chi_{3328}(219,\cdot)\)
  \(\chi_{3328}(227,\cdot)\)
  \(\chi_{3328}(267,\cdot)\)
  \(\chi_{3328}(275,\cdot)\)
  \(\chi_{3328}(427,\cdot)\)
  \(\chi_{3328}(435,\cdot)\)
  \(\chi_{3328}(475,\cdot)\)
  \(\chi_{3328}(483,\cdot)\)
  \(\chi_{3328}(635,\cdot)\)
  \(\chi_{3328}(643,\cdot)\)
  \(\chi_{3328}(683,\cdot)\)
  \(\chi_{3328}(691,\cdot)\)
  \(\chi_{3328}(843,\cdot)\)
  \(\chi_{3328}(851,\cdot)\)
  \(\chi_{3328}(891,\cdot)\)
  \(\chi_{3328}(899,\cdot)\)
  \(\chi_{3328}(1051,\cdot)\)
  \(\chi_{3328}(1059,\cdot)\)
  \(\chi_{3328}(1099,\cdot)\)
  \(\chi_{3328}(1107,\cdot)\)
  \(\chi_{3328}(1259,\cdot)\)
  \(\chi_{3328}(1267,\cdot)\)
  \(\chi_{3328}(1307,\cdot)\)
  \(\chi_{3328}(1315,\cdot)\)
  \(\chi_{3328}(1467,\cdot)\)
  \(\chi_{3328}(1475,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((1535,261,769)\) → \((-1,e\left(\frac{37}{64}\right),e\left(\frac{11}{12}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) | 
    
    
      | \( \chi_{ 3328 }(1099, a) \) | \(1\) | \(1\) | \(e\left(\frac{77}{192}\right)\) | \(e\left(\frac{53}{64}\right)\) | \(e\left(\frac{35}{96}\right)\) | \(e\left(\frac{77}{96}\right)\) | \(e\left(\frac{11}{192}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{73}{192}\right)\) | \(e\left(\frac{49}{64}\right)\) | \(e\left(\frac{73}{96}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)