Properties

Label 3300.947
Modulus $3300$
Conductor $300$
Order $20$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3300, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([10,10,17,0]))
 
Copy content pari:[g,chi] = znchar(Mod(947,3300))
 

Basic properties

Modulus: \(3300\)
Conductor: \(300\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{300}(47,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3300.ez

\(\chi_{3300}(23,\cdot)\) \(\chi_{3300}(287,\cdot)\) \(\chi_{3300}(683,\cdot)\) \(\chi_{3300}(947,\cdot)\) \(\chi_{3300}(2003,\cdot)\) \(\chi_{3300}(2267,\cdot)\) \(\chi_{3300}(2663,\cdot)\) \(\chi_{3300}(2927,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: 20.0.180203247070312500000000000000000000.1

Values on generators

\((1651,2201,2377,1201)\) → \((-1,-1,e\left(\frac{17}{20}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3300 }(947, a) \) \(-1\)\(1\)\(-i\)\(e\left(\frac{3}{20}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{7}{20}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{13}{20}\right)\)\(e\left(\frac{9}{10}\right)\)\(i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3300 }(947,a) \;\) at \(\;a = \) e.g. 2