Properties

Label 3300.59
Modulus $3300$
Conductor $3300$
Order $10$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3300, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([5,5,7,2]))
 
Copy content pari:[g,chi] = znchar(Mod(59,3300))
 

Basic properties

Modulus: \(3300\)
Conductor: \(3300\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3300.bn

\(\chi_{3300}(59,\cdot)\) \(\chi_{3300}(779,\cdot)\) \(\chi_{3300}(839,\cdot)\) \(\chi_{3300}(1919,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.40694693814843750000000000.4

Values on generators

\((1651,2201,2377,1201)\) → \((-1,-1,e\left(\frac{7}{10}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3300 }(59, a) \) \(1\)\(1\)\(e\left(\frac{2}{5}\right)\)\(-1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3300 }(59,a) \;\) at \(\;a = \) e.g. 2