sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3300, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([5,5,7,2]))
pari:[g,chi] = znchar(Mod(59,3300))
| Modulus: | \(3300\) | |
| Conductor: | \(3300\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(10\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3300}(59,\cdot)\)
\(\chi_{3300}(779,\cdot)\)
\(\chi_{3300}(839,\cdot)\)
\(\chi_{3300}(1919,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1651,2201,2377,1201)\) → \((-1,-1,e\left(\frac{7}{10}\right),e\left(\frac{1}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 3300 }(59, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(-1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)