sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3300, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([10,10,15,6]))
pari:[g,chi] = znchar(Mod(3143,3300))
\(\chi_{3300}(107,\cdot)\)
\(\chi_{3300}(743,\cdot)\)
\(\chi_{3300}(1007,\cdot)\)
\(\chi_{3300}(1943,\cdot)\)
\(\chi_{3300}(2207,\cdot)\)
\(\chi_{3300}(2543,\cdot)\)
\(\chi_{3300}(2807,\cdot)\)
\(\chi_{3300}(3143,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1651,2201,2377,1201)\) → \((-1,-1,-i,e\left(\frac{3}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
| \( \chi_{ 3300 }(3143, a) \) |
\(1\) | \(1\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{19}{20}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(i\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(i\) |
sage:chi.jacobi_sum(n)