sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3255, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,1,0,2]))
pari:[g,chi] = znchar(Mod(92,3255))
\(\chi_{3255}(92,\cdot)\)
\(\chi_{3255}(743,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2171,652,1396,2731)\) → \((-1,i,1,-1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
| \( \chi_{ 3255 }(92, a) \) |
\(-1\) | \(1\) | \(-i\) | \(-1\) | \(i\) | \(1\) | \(i\) | \(1\) | \(i\) | \(-1\) | \(-i\) | \(-i\) |
sage:chi.jacobi_sum(n)