sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3240, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([9,9,8,0]))
pari:[g,chi] = znchar(Mod(91,3240))
\(\chi_{3240}(91,\cdot)\)
\(\chi_{3240}(451,\cdot)\)
\(\chi_{3240}(1171,\cdot)\)
\(\chi_{3240}(1531,\cdot)\)
\(\chi_{3240}(2251,\cdot)\)
\(\chi_{3240}(2611,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2431,1621,3161,1297)\) → \((-1,-1,e\left(\frac{4}{9}\right),1)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 3240 }(91, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{17}{18}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{9}\right)\) |
sage:chi.jacobi_sum(n)