Properties

Label 3240.2543
Modulus $3240$
Conductor $1620$
Order $108$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3240, base_ring=CyclotomicField(108)) M = H._module chi = DirichletCharacter(H, M([54,0,10,81]))
 
Copy content pari:[g,chi] = znchar(Mod(2543,3240))
 

Basic properties

Modulus: \(3240\)
Conductor: \(1620\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(108\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1620}(923,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3240.dp

\(\chi_{3240}(23,\cdot)\) \(\chi_{3240}(47,\cdot)\) \(\chi_{3240}(167,\cdot)\) \(\chi_{3240}(263,\cdot)\) \(\chi_{3240}(383,\cdot)\) \(\chi_{3240}(407,\cdot)\) \(\chi_{3240}(527,\cdot)\) \(\chi_{3240}(623,\cdot)\) \(\chi_{3240}(743,\cdot)\) \(\chi_{3240}(767,\cdot)\) \(\chi_{3240}(887,\cdot)\) \(\chi_{3240}(983,\cdot)\) \(\chi_{3240}(1103,\cdot)\) \(\chi_{3240}(1127,\cdot)\) \(\chi_{3240}(1247,\cdot)\) \(\chi_{3240}(1343,\cdot)\) \(\chi_{3240}(1463,\cdot)\) \(\chi_{3240}(1487,\cdot)\) \(\chi_{3240}(1607,\cdot)\) \(\chi_{3240}(1703,\cdot)\) \(\chi_{3240}(1823,\cdot)\) \(\chi_{3240}(1847,\cdot)\) \(\chi_{3240}(1967,\cdot)\) \(\chi_{3240}(2063,\cdot)\) \(\chi_{3240}(2183,\cdot)\) \(\chi_{3240}(2207,\cdot)\) \(\chi_{3240}(2327,\cdot)\) \(\chi_{3240}(2423,\cdot)\) \(\chi_{3240}(2543,\cdot)\) \(\chi_{3240}(2567,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((2431,1621,3161,1297)\) → \((-1,1,e\left(\frac{5}{54}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3240 }(2543, a) \) \(-1\)\(1\)\(e\left(\frac{79}{108}\right)\)\(e\left(\frac{19}{27}\right)\)\(e\left(\frac{107}{108}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{83}{108}\right)\)\(e\left(\frac{25}{27}\right)\)\(e\left(\frac{19}{54}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{49}{54}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3240 }(2543,a) \;\) at \(\;a = \) e.g. 2