Properties

Label 3240.2497
Modulus $3240$
Conductor $405$
Order $108$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3240, base_ring=CyclotomicField(108)) M = H._module chi = DirichletCharacter(H, M([0,0,88,27]))
 
Copy content pari:[g,chi] = znchar(Mod(2497,3240))
 

Basic properties

Modulus: \(3240\)
Conductor: \(405\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(108\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{405}(67,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3240.dq

\(\chi_{3240}(97,\cdot)\) \(\chi_{3240}(193,\cdot)\) \(\chi_{3240}(313,\cdot)\) \(\chi_{3240}(337,\cdot)\) \(\chi_{3240}(457,\cdot)\) \(\chi_{3240}(553,\cdot)\) \(\chi_{3240}(673,\cdot)\) \(\chi_{3240}(697,\cdot)\) \(\chi_{3240}(817,\cdot)\) \(\chi_{3240}(913,\cdot)\) \(\chi_{3240}(1033,\cdot)\) \(\chi_{3240}(1057,\cdot)\) \(\chi_{3240}(1177,\cdot)\) \(\chi_{3240}(1273,\cdot)\) \(\chi_{3240}(1393,\cdot)\) \(\chi_{3240}(1417,\cdot)\) \(\chi_{3240}(1537,\cdot)\) \(\chi_{3240}(1633,\cdot)\) \(\chi_{3240}(1753,\cdot)\) \(\chi_{3240}(1777,\cdot)\) \(\chi_{3240}(1897,\cdot)\) \(\chi_{3240}(1993,\cdot)\) \(\chi_{3240}(2113,\cdot)\) \(\chi_{3240}(2137,\cdot)\) \(\chi_{3240}(2257,\cdot)\) \(\chi_{3240}(2353,\cdot)\) \(\chi_{3240}(2473,\cdot)\) \(\chi_{3240}(2497,\cdot)\) \(\chi_{3240}(2617,\cdot)\) \(\chi_{3240}(2713,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((2431,1621,3161,1297)\) → \((1,1,e\left(\frac{22}{27}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3240 }(2497, a) \) \(-1\)\(1\)\(e\left(\frac{31}{108}\right)\)\(e\left(\frac{16}{27}\right)\)\(e\left(\frac{29}{108}\right)\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{77}{108}\right)\)\(e\left(\frac{35}{54}\right)\)\(e\left(\frac{8}{27}\right)\)\(e\left(\frac{17}{36}\right)\)\(e\left(\frac{5}{27}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3240 }(2497,a) \;\) at \(\;a = \) e.g. 2