sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3175, base_ring=CyclotomicField(420))
M = H._module
chi = DirichletCharacter(H, M([357,50]))
pari:[g,chi] = znchar(Mod(447,3175))
Modulus: | \(3175\) | |
Conductor: | \(3175\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(420\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3175}(27,\cdot)\)
\(\chi_{3175}(33,\cdot)\)
\(\chi_{3175}(77,\cdot)\)
\(\chi_{3175}(102,\cdot)\)
\(\chi_{3175}(137,\cdot)\)
\(\chi_{3175}(167,\cdot)\)
\(\chi_{3175}(178,\cdot)\)
\(\chi_{3175}(287,\cdot)\)
\(\chi_{3175}(308,\cdot)\)
\(\chi_{3175}(408,\cdot)\)
\(\chi_{3175}(447,\cdot)\)
\(\chi_{3175}(458,\cdot)\)
\(\chi_{3175}(483,\cdot)\)
\(\chi_{3175}(513,\cdot)\)
\(\chi_{3175}(548,\cdot)\)
\(\chi_{3175}(562,\cdot)\)
\(\chi_{3175}(588,\cdot)\)
\(\chi_{3175}(597,\cdot)\)
\(\chi_{3175}(662,\cdot)\)
\(\chi_{3175}(712,\cdot)\)
\(\chi_{3175}(737,\cdot)\)
\(\chi_{3175}(767,\cdot)\)
\(\chi_{3175}(772,\cdot)\)
\(\chi_{3175}(802,\cdot)\)
\(\chi_{3175}(813,\cdot)\)
\(\chi_{3175}(828,\cdot)\)
\(\chi_{3175}(842,\cdot)\)
\(\chi_{3175}(922,\cdot)\)
\(\chi_{3175}(978,\cdot)\)
\(\chi_{3175}(1067,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1652,3051)\) → \((e\left(\frac{17}{20}\right),e\left(\frac{5}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 3175 }(447, a) \) |
\(1\) | \(1\) | \(e\left(\frac{59}{140}\right)\) | \(e\left(\frac{29}{420}\right)\) | \(e\left(\frac{59}{70}\right)\) | \(e\left(\frac{103}{210}\right)\) | \(e\left(\frac{79}{84}\right)\) | \(e\left(\frac{37}{140}\right)\) | \(e\left(\frac{29}{210}\right)\) | \(e\left(\frac{73}{105}\right)\) | \(e\left(\frac{383}{420}\right)\) | \(e\left(\frac{143}{420}\right)\) |
sage:chi.jacobi_sum(n)