sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3168, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([60,105,40,108]))
pari:[g,chi] = znchar(Mod(787,3168))
Modulus: | \(3168\) | |
Conductor: | \(3168\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(120\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3168}(139,\cdot)\)
\(\chi_{3168}(211,\cdot)\)
\(\chi_{3168}(259,\cdot)\)
\(\chi_{3168}(283,\cdot)\)
\(\chi_{3168}(403,\cdot)\)
\(\chi_{3168}(475,\cdot)\)
\(\chi_{3168}(547,\cdot)\)
\(\chi_{3168}(787,\cdot)\)
\(\chi_{3168}(931,\cdot)\)
\(\chi_{3168}(1003,\cdot)\)
\(\chi_{3168}(1051,\cdot)\)
\(\chi_{3168}(1075,\cdot)\)
\(\chi_{3168}(1195,\cdot)\)
\(\chi_{3168}(1267,\cdot)\)
\(\chi_{3168}(1339,\cdot)\)
\(\chi_{3168}(1579,\cdot)\)
\(\chi_{3168}(1723,\cdot)\)
\(\chi_{3168}(1795,\cdot)\)
\(\chi_{3168}(1843,\cdot)\)
\(\chi_{3168}(1867,\cdot)\)
\(\chi_{3168}(1987,\cdot)\)
\(\chi_{3168}(2059,\cdot)\)
\(\chi_{3168}(2131,\cdot)\)
\(\chi_{3168}(2371,\cdot)\)
\(\chi_{3168}(2515,\cdot)\)
\(\chi_{3168}(2587,\cdot)\)
\(\chi_{3168}(2635,\cdot)\)
\(\chi_{3168}(2659,\cdot)\)
\(\chi_{3168}(2779,\cdot)\)
\(\chi_{3168}(2851,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((991,1189,353,1729)\) → \((-1,e\left(\frac{7}{8}\right),e\left(\frac{1}{3}\right),e\left(\frac{9}{10}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 3168 }(787, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{120}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{83}{120}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{31}{120}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{1}{40}\right)\) |
sage:chi.jacobi_sum(n)