sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3168, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([0,105,40,72]))
pari:[g,chi] = znchar(Mod(2605,3168))
Modulus: | \(3168\) | |
Conductor: | \(3168\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(120\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3168}(157,\cdot)\)
\(\chi_{3168}(229,\cdot)\)
\(\chi_{3168}(301,\cdot)\)
\(\chi_{3168}(421,\cdot)\)
\(\chi_{3168}(445,\cdot)\)
\(\chi_{3168}(493,\cdot)\)
\(\chi_{3168}(565,\cdot)\)
\(\chi_{3168}(709,\cdot)\)
\(\chi_{3168}(949,\cdot)\)
\(\chi_{3168}(1021,\cdot)\)
\(\chi_{3168}(1093,\cdot)\)
\(\chi_{3168}(1213,\cdot)\)
\(\chi_{3168}(1237,\cdot)\)
\(\chi_{3168}(1285,\cdot)\)
\(\chi_{3168}(1357,\cdot)\)
\(\chi_{3168}(1501,\cdot)\)
\(\chi_{3168}(1741,\cdot)\)
\(\chi_{3168}(1813,\cdot)\)
\(\chi_{3168}(1885,\cdot)\)
\(\chi_{3168}(2005,\cdot)\)
\(\chi_{3168}(2029,\cdot)\)
\(\chi_{3168}(2077,\cdot)\)
\(\chi_{3168}(2149,\cdot)\)
\(\chi_{3168}(2293,\cdot)\)
\(\chi_{3168}(2533,\cdot)\)
\(\chi_{3168}(2605,\cdot)\)
\(\chi_{3168}(2677,\cdot)\)
\(\chi_{3168}(2797,\cdot)\)
\(\chi_{3168}(2821,\cdot)\)
\(\chi_{3168}(2869,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((991,1189,353,1729)\) → \((1,e\left(\frac{7}{8}\right),e\left(\frac{1}{3}\right),e\left(\frac{3}{5}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 3168 }(2605, a) \) |
\(1\) | \(1\) | \(e\left(\frac{113}{120}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{47}{120}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{37}{40}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{53}{60}\right)\) | \(e\left(\frac{19}{120}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{9}{40}\right)\) |
sage:chi.jacobi_sum(n)