Properties

Label 3168.1627
Modulus $3168$
Conductor $3168$
Order $24$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3168, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,3,16,12]))
 
Copy content pari:[g,chi] = znchar(Mod(1627,3168))
 

Basic properties

Modulus: \(3168\)
Conductor: \(3168\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3168.dj

\(\chi_{3168}(43,\cdot)\) \(\chi_{3168}(571,\cdot)\) \(\chi_{3168}(835,\cdot)\) \(\chi_{3168}(1363,\cdot)\) \(\chi_{3168}(1627,\cdot)\) \(\chi_{3168}(2155,\cdot)\) \(\chi_{3168}(2419,\cdot)\) \(\chi_{3168}(2947,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((991,1189,353,1729)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{2}{3}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3168 }(1627, a) \) \(1\)\(1\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{17}{24}\right)\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{3}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3168 }(1627,a) \;\) at \(\;a = \) e.g. 2