sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3160, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([0,39,39,4]))
pari:[g,chi] = znchar(Mod(1029,3160))
Modulus: | \(3160\) | |
Conductor: | \(3160\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3160}(189,\cdot)\)
\(\chi_{3160}(269,\cdot)\)
\(\chi_{3160}(309,\cdot)\)
\(\chi_{3160}(389,\cdot)\)
\(\chi_{3160}(589,\cdot)\)
\(\chi_{3160}(629,\cdot)\)
\(\chi_{3160}(909,\cdot)\)
\(\chi_{3160}(1029,\cdot)\)
\(\chi_{3160}(1069,\cdot)\)
\(\chi_{3160}(1189,\cdot)\)
\(\chi_{3160}(1229,\cdot)\)
\(\chi_{3160}(1269,\cdot)\)
\(\chi_{3160}(1309,\cdot)\)
\(\chi_{3160}(1589,\cdot)\)
\(\chi_{3160}(1629,\cdot)\)
\(\chi_{3160}(1709,\cdot)\)
\(\chi_{3160}(1749,\cdot)\)
\(\chi_{3160}(1789,\cdot)\)
\(\chi_{3160}(1909,\cdot)\)
\(\chi_{3160}(2149,\cdot)\)
\(\chi_{3160}(2389,\cdot)\)
\(\chi_{3160}(2469,\cdot)\)
\(\chi_{3160}(2869,\cdot)\)
\(\chi_{3160}(2949,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((791,1581,1897,161)\) → \((1,-1,-1,e\left(\frac{2}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 3160 }(1029, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{39}\right)\) | \(e\left(\frac{17}{78}\right)\) | \(e\left(\frac{4}{39}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{29}{39}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{11}{78}\right)\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{2}{13}\right)\) |
sage:chi.jacobi_sum(n)