Properties

Label 3150.2519
Modulus $3150$
Conductor $525$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3150, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([5,9,5]))
 
Copy content pari:[g,chi] = znchar(Mod(2519,3150))
 

Basic properties

Modulus: \(3150\)
Conductor: \(525\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{525}(419,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3150.bx

\(\chi_{3150}(629,\cdot)\) \(\chi_{3150}(1259,\cdot)\) \(\chi_{3150}(1889,\cdot)\) \(\chi_{3150}(2519,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.3115921783447265625.1

Values on generators

\((2801,127,451)\) → \((-1,e\left(\frac{9}{10}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3150 }(2519, a) \) \(1\)\(1\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{3}{5}\right)\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3150 }(2519,a) \;\) at \(\;a = \) e.g. 2