sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(31360, base_ring=CyclotomicField(224))
M = H._module
chi = DirichletCharacter(H, M([0,49,168,176]))
pari:[g,chi] = znchar(Mod(7853,31360))
| Modulus: | \(31360\) | |
| Conductor: | \(31360\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(224\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{31360}(13,\cdot)\)
\(\chi_{31360}(517,\cdot)\)
\(\chi_{31360}(573,\cdot)\)
\(\chi_{31360}(1133,\cdot)\)
\(\chi_{31360}(1637,\cdot)\)
\(\chi_{31360}(1693,\cdot)\)
\(\chi_{31360}(2197,\cdot)\)
\(\chi_{31360}(2757,\cdot)\)
\(\chi_{31360}(2813,\cdot)\)
\(\chi_{31360}(3317,\cdot)\)
\(\chi_{31360}(3373,\cdot)\)
\(\chi_{31360}(3877,\cdot)\)
\(\chi_{31360}(3933,\cdot)\)
\(\chi_{31360}(4437,\cdot)\)
\(\chi_{31360}(4493,\cdot)\)
\(\chi_{31360}(5053,\cdot)\)
\(\chi_{31360}(5557,\cdot)\)
\(\chi_{31360}(5613,\cdot)\)
\(\chi_{31360}(6117,\cdot)\)
\(\chi_{31360}(6677,\cdot)\)
\(\chi_{31360}(6733,\cdot)\)
\(\chi_{31360}(7237,\cdot)\)
\(\chi_{31360}(7293,\cdot)\)
\(\chi_{31360}(7797,\cdot)\)
\(\chi_{31360}(7853,\cdot)\)
\(\chi_{31360}(8357,\cdot)\)
\(\chi_{31360}(8413,\cdot)\)
\(\chi_{31360}(8973,\cdot)\)
\(\chi_{31360}(9477,\cdot)\)
\(\chi_{31360}(9533,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((17151,28421,18817,10881)\) → \((1,e\left(\frac{7}{32}\right),-i,e\left(\frac{11}{14}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 31360 }(7853, a) \) |
\(1\) | \(1\) | \(e\left(\frac{155}{224}\right)\) | \(e\left(\frac{43}{112}\right)\) | \(e\left(\frac{5}{224}\right)\) | \(e\left(\frac{103}{224}\right)\) | \(e\left(\frac{29}{56}\right)\) | \(e\left(\frac{1}{32}\right)\) | \(e\left(\frac{19}{112}\right)\) | \(e\left(\frac{17}{224}\right)\) | \(e\left(\frac{123}{224}\right)\) | \(i\) |
sage:chi.jacobi_sum(n)