Properties

Label 31360.7853
Modulus $31360$
Conductor $31360$
Order $224$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31360, base_ring=CyclotomicField(224)) M = H._module chi = DirichletCharacter(H, M([0,49,168,176]))
 
Copy content pari:[g,chi] = znchar(Mod(7853,31360))
 

Basic properties

Modulus: \(31360\)
Conductor: \(31360\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(224\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 31360.lv

\(\chi_{31360}(13,\cdot)\) \(\chi_{31360}(517,\cdot)\) \(\chi_{31360}(573,\cdot)\) \(\chi_{31360}(1133,\cdot)\) \(\chi_{31360}(1637,\cdot)\) \(\chi_{31360}(1693,\cdot)\) \(\chi_{31360}(2197,\cdot)\) \(\chi_{31360}(2757,\cdot)\) \(\chi_{31360}(2813,\cdot)\) \(\chi_{31360}(3317,\cdot)\) \(\chi_{31360}(3373,\cdot)\) \(\chi_{31360}(3877,\cdot)\) \(\chi_{31360}(3933,\cdot)\) \(\chi_{31360}(4437,\cdot)\) \(\chi_{31360}(4493,\cdot)\) \(\chi_{31360}(5053,\cdot)\) \(\chi_{31360}(5557,\cdot)\) \(\chi_{31360}(5613,\cdot)\) \(\chi_{31360}(6117,\cdot)\) \(\chi_{31360}(6677,\cdot)\) \(\chi_{31360}(6733,\cdot)\) \(\chi_{31360}(7237,\cdot)\) \(\chi_{31360}(7293,\cdot)\) \(\chi_{31360}(7797,\cdot)\) \(\chi_{31360}(7853,\cdot)\) \(\chi_{31360}(8357,\cdot)\) \(\chi_{31360}(8413,\cdot)\) \(\chi_{31360}(8973,\cdot)\) \(\chi_{31360}(9477,\cdot)\) \(\chi_{31360}(9533,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{224})$
Fixed field: Number field defined by a degree 224 polynomial (not computed)

Values on generators

\((17151,28421,18817,10881)\) → \((1,e\left(\frac{7}{32}\right),-i,e\left(\frac{11}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 31360 }(7853, a) \) \(1\)\(1\)\(e\left(\frac{155}{224}\right)\)\(e\left(\frac{43}{112}\right)\)\(e\left(\frac{5}{224}\right)\)\(e\left(\frac{103}{224}\right)\)\(e\left(\frac{29}{56}\right)\)\(e\left(\frac{1}{32}\right)\)\(e\left(\frac{19}{112}\right)\)\(e\left(\frac{17}{224}\right)\)\(e\left(\frac{123}{224}\right)\)\(i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 31360 }(7853,a) \;\) at \(\;a = \) e.g. 2