Properties

Label 31360.6137
Modulus $31360$
Conductor $15680$
Order $336$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31360, base_ring=CyclotomicField(336)) M = H._module chi = DirichletCharacter(H, M([0,105,84,88]))
 
Copy content pari:[g,chi] = znchar(Mod(6137,31360))
 

Basic properties

Modulus: \(31360\)
Conductor: \(15680\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(336\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{15680}(9077,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 31360.mi

\(\chi_{31360}(73,\cdot)\) \(\chi_{31360}(537,\cdot)\) \(\chi_{31360}(857,\cdot)\) \(\chi_{31360}(873,\cdot)\) \(\chi_{31360}(1193,\cdot)\) \(\chi_{31360}(1657,\cdot)\) \(\chi_{31360}(1977,\cdot)\) \(\chi_{31360}(1993,\cdot)\) \(\chi_{31360}(2313,\cdot)\) \(\chi_{31360}(2777,\cdot)\) \(\chi_{31360}(3097,\cdot)\) \(\chi_{31360}(3113,\cdot)\) \(\chi_{31360}(3433,\cdot)\) \(\chi_{31360}(3897,\cdot)\) \(\chi_{31360}(4217,\cdot)\) \(\chi_{31360}(4553,\cdot)\) \(\chi_{31360}(5337,\cdot)\) \(\chi_{31360}(5353,\cdot)\) \(\chi_{31360}(5673,\cdot)\) \(\chi_{31360}(6137,\cdot)\) \(\chi_{31360}(6457,\cdot)\) \(\chi_{31360}(6473,\cdot)\) \(\chi_{31360}(7257,\cdot)\) \(\chi_{31360}(7593,\cdot)\) \(\chi_{31360}(7913,\cdot)\) \(\chi_{31360}(8377,\cdot)\) \(\chi_{31360}(8697,\cdot)\) \(\chi_{31360}(8713,\cdot)\) \(\chi_{31360}(9033,\cdot)\) \(\chi_{31360}(9497,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{336})$
Fixed field: Number field defined by a degree 336 polynomial (not computed)

Values on generators

\((17151,28421,18817,10881)\) → \((1,e\left(\frac{5}{16}\right),i,e\left(\frac{11}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 31360 }(6137, a) \) \(1\)\(1\)\(e\left(\frac{319}{336}\right)\)\(e\left(\frac{151}{168}\right)\)\(e\left(\frac{13}{336}\right)\)\(e\left(\frac{9}{112}\right)\)\(e\left(\frac{23}{42}\right)\)\(e\left(\frac{41}{48}\right)\)\(e\left(\frac{13}{168}\right)\)\(e\left(\frac{95}{112}\right)\)\(e\left(\frac{73}{112}\right)\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 31360 }(6137,a) \;\) at \(\;a = \) e.g. 2