sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(31360, base_ring=CyclotomicField(672))
M = H._module
chi = DirichletCharacter(H, M([0,525,168,512]))
pari:[g,chi] = znchar(Mod(37,31360))
| Modulus: | \(31360\) | |
| Conductor: | \(31360\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(672\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{31360}(37,\cdot)\)
\(\chi_{31360}(93,\cdot)\)
\(\chi_{31360}(277,\cdot)\)
\(\chi_{31360}(333,\cdot)\)
\(\chi_{31360}(597,\cdot)\)
\(\chi_{31360}(653,\cdot)\)
\(\chi_{31360}(837,\cdot)\)
\(\chi_{31360}(893,\cdot)\)
\(\chi_{31360}(1213,\cdot)\)
\(\chi_{31360}(1397,\cdot)\)
\(\chi_{31360}(1453,\cdot)\)
\(\chi_{31360}(1717,\cdot)\)
\(\chi_{31360}(1773,\cdot)\)
\(\chi_{31360}(1957,\cdot)\)
\(\chi_{31360}(2013,\cdot)\)
\(\chi_{31360}(2277,\cdot)\)
\(\chi_{31360}(2573,\cdot)\)
\(\chi_{31360}(2837,\cdot)\)
\(\chi_{31360}(2893,\cdot)\)
\(\chi_{31360}(3077,\cdot)\)
\(\chi_{31360}(3133,\cdot)\)
\(\chi_{31360}(3397,\cdot)\)
\(\chi_{31360}(3453,\cdot)\)
\(\chi_{31360}(3637,\cdot)\)
\(\chi_{31360}(3957,\cdot)\)
\(\chi_{31360}(4013,\cdot)\)
\(\chi_{31360}(4197,\cdot)\)
\(\chi_{31360}(4253,\cdot)\)
\(\chi_{31360}(4517,\cdot)\)
\(\chi_{31360}(4573,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((17151,28421,18817,10881)\) → \((1,e\left(\frac{25}{32}\right),i,e\left(\frac{16}{21}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
| \( \chi_{ 31360 }(37, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{575}{672}\right)\) | \(e\left(\frac{239}{336}\right)\) | \(e\left(\frac{593}{672}\right)\) | \(e\left(\frac{137}{224}\right)\) | \(e\left(\frac{29}{168}\right)\) | \(e\left(\frac{13}{96}\right)\) | \(e\left(\frac{215}{336}\right)\) | \(e\left(\frac{127}{224}\right)\) | \(e\left(\frac{69}{224}\right)\) | \(e\left(\frac{7}{12}\right)\) |
sage:chi.jacobi_sum(n)