Properties

Label 31360.14071
Modulus $31360$
Conductor $3136$
Order $112$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31360, base_ring=CyclotomicField(112)) M = H._module chi = DirichletCharacter(H, M([56,21,0,96]))
 
Copy content pari:[g,chi] = znchar(Mod(14071,31360))
 

Basic properties

Modulus: \(31360\)
Conductor: \(3136\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(112\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3136}(2115,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 31360.kx

\(\chi_{31360}(71,\cdot)\) \(\chi_{31360}(631,\cdot)\) \(\chi_{31360}(1191,\cdot)\) \(\chi_{31360}(1751,\cdot)\) \(\chi_{31360}(2311,\cdot)\) \(\chi_{31360}(2871,\cdot)\) \(\chi_{31360}(3991,\cdot)\) \(\chi_{31360}(4551,\cdot)\) \(\chi_{31360}(5111,\cdot)\) \(\chi_{31360}(5671,\cdot)\) \(\chi_{31360}(6231,\cdot)\) \(\chi_{31360}(6791,\cdot)\) \(\chi_{31360}(7911,\cdot)\) \(\chi_{31360}(8471,\cdot)\) \(\chi_{31360}(9031,\cdot)\) \(\chi_{31360}(9591,\cdot)\) \(\chi_{31360}(10151,\cdot)\) \(\chi_{31360}(10711,\cdot)\) \(\chi_{31360}(11831,\cdot)\) \(\chi_{31360}(12391,\cdot)\) \(\chi_{31360}(12951,\cdot)\) \(\chi_{31360}(13511,\cdot)\) \(\chi_{31360}(14071,\cdot)\) \(\chi_{31360}(14631,\cdot)\) \(\chi_{31360}(15751,\cdot)\) \(\chi_{31360}(16311,\cdot)\) \(\chi_{31360}(16871,\cdot)\) \(\chi_{31360}(17431,\cdot)\) \(\chi_{31360}(17991,\cdot)\) \(\chi_{31360}(18551,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{112})$
Fixed field: Number field defined by a degree 112 polynomial (not computed)

Values on generators

\((17151,28421,18817,10881)\) → \((-1,e\left(\frac{3}{16}\right),1,e\left(\frac{6}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 31360 }(14071, a) \) \(-1\)\(1\)\(e\left(\frac{103}{112}\right)\)\(e\left(\frac{47}{56}\right)\)\(e\left(\frac{81}{112}\right)\)\(e\left(\frac{11}{112}\right)\)\(e\left(\frac{19}{28}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{39}{56}\right)\)\(e\left(\frac{85}{112}\right)\)\(e\left(\frac{55}{112}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 31360 }(14071,a) \;\) at \(\;a = \) e.g. 2