Properties

Label 31360.14041
Modulus $31360$
Conductor $3136$
Order $112$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(31360, base_ring=CyclotomicField(112)) M = H._module chi = DirichletCharacter(H, M([0,63,0,8]))
 
Copy content pari:[g,chi] = znchar(Mod(14041,31360))
 

Basic properties

Modulus: \(31360\)
Conductor: \(3136\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(112\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3136}(2085,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 31360.ku

\(\chi_{31360}(41,\cdot)\) \(\chi_{31360}(601,\cdot)\) \(\chi_{31360}(1161,\cdot)\) \(\chi_{31360}(1721,\cdot)\) \(\chi_{31360}(2281,\cdot)\) \(\chi_{31360}(3401,\cdot)\) \(\chi_{31360}(3961,\cdot)\) \(\chi_{31360}(4521,\cdot)\) \(\chi_{31360}(5081,\cdot)\) \(\chi_{31360}(5641,\cdot)\) \(\chi_{31360}(6201,\cdot)\) \(\chi_{31360}(7321,\cdot)\) \(\chi_{31360}(7881,\cdot)\) \(\chi_{31360}(8441,\cdot)\) \(\chi_{31360}(9001,\cdot)\) \(\chi_{31360}(9561,\cdot)\) \(\chi_{31360}(10121,\cdot)\) \(\chi_{31360}(11241,\cdot)\) \(\chi_{31360}(11801,\cdot)\) \(\chi_{31360}(12361,\cdot)\) \(\chi_{31360}(12921,\cdot)\) \(\chi_{31360}(13481,\cdot)\) \(\chi_{31360}(14041,\cdot)\) \(\chi_{31360}(15161,\cdot)\) \(\chi_{31360}(15721,\cdot)\) \(\chi_{31360}(16281,\cdot)\) \(\chi_{31360}(16841,\cdot)\) \(\chi_{31360}(17401,\cdot)\) \(\chi_{31360}(17961,\cdot)\) \(\chi_{31360}(19081,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{112})$
Fixed field: Number field defined by a degree 112 polynomial (not computed)

Values on generators

\((17151,28421,18817,10881)\) → \((1,e\left(\frac{9}{16}\right),1,e\left(\frac{1}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 31360 }(14041, a) \) \(-1\)\(1\)\(e\left(\frac{85}{112}\right)\)\(e\left(\frac{29}{56}\right)\)\(e\left(\frac{75}{112}\right)\)\(e\left(\frac{89}{112}\right)\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{33}{56}\right)\)\(e\left(\frac{31}{112}\right)\)\(e\left(\frac{53}{112}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 31360 }(14041,a) \;\) at \(\;a = \) e.g. 2