sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3136, base_ring=CyclotomicField(112))
M = H._module
chi = DirichletCharacter(H, M([56,91,64]))
pari:[g,chi] = znchar(Mod(1835,3136))
| Modulus: | \(3136\) | |
| Conductor: | \(3136\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(112\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3136}(43,\cdot)\)
\(\chi_{3136}(155,\cdot)\)
\(\chi_{3136}(211,\cdot)\)
\(\chi_{3136}(267,\cdot)\)
\(\chi_{3136}(323,\cdot)\)
\(\chi_{3136}(379,\cdot)\)
\(\chi_{3136}(435,\cdot)\)
\(\chi_{3136}(547,\cdot)\)
\(\chi_{3136}(603,\cdot)\)
\(\chi_{3136}(659,\cdot)\)
\(\chi_{3136}(715,\cdot)\)
\(\chi_{3136}(771,\cdot)\)
\(\chi_{3136}(827,\cdot)\)
\(\chi_{3136}(939,\cdot)\)
\(\chi_{3136}(995,\cdot)\)
\(\chi_{3136}(1051,\cdot)\)
\(\chi_{3136}(1107,\cdot)\)
\(\chi_{3136}(1163,\cdot)\)
\(\chi_{3136}(1219,\cdot)\)
\(\chi_{3136}(1331,\cdot)\)
\(\chi_{3136}(1387,\cdot)\)
\(\chi_{3136}(1443,\cdot)\)
\(\chi_{3136}(1499,\cdot)\)
\(\chi_{3136}(1555,\cdot)\)
\(\chi_{3136}(1611,\cdot)\)
\(\chi_{3136}(1723,\cdot)\)
\(\chi_{3136}(1779,\cdot)\)
\(\chi_{3136}(1835,\cdot)\)
\(\chi_{3136}(1891,\cdot)\)
\(\chi_{3136}(1947,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1471,197,1473)\) → \((-1,e\left(\frac{13}{16}\right),e\left(\frac{4}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
| \( \chi_{ 3136 }(1835, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{57}{112}\right)\) | \(e\left(\frac{43}{112}\right)\) | \(e\left(\frac{1}{56}\right)\) | \(e\left(\frac{47}{112}\right)\) | \(e\left(\frac{5}{112}\right)\) | \(e\left(\frac{25}{28}\right)\) | \(e\left(\frac{1}{28}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{33}{56}\right)\) | \(e\left(\frac{43}{56}\right)\) |
sage:chi.jacobi_sum(n)