Properties

Label 309680.31243
Modulus $309680$
Conductor $44240$
Order $156$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(309680, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([78,39,117,52,72]))
 
Copy content pari:[g,chi] = znchar(Mod(31243,309680))
 

Basic properties

Modulus: \(309680\)
Conductor: \(44240\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{44240}(31243,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 309680.bnd

\(\chi_{309680}(67,\cdot)\) \(\chi_{309680}(31243,\cdot)\) \(\chi_{309680}(31427,\cdot)\) \(\chi_{309680}(35163,\cdot)\) \(\chi_{309680}(50843,\cdot)\) \(\chi_{309680}(58683,\cdot)\) \(\chi_{309680}(63963,\cdot)\) \(\chi_{309680}(67883,\cdot)\) \(\chi_{309680}(81027,\cdot)\) \(\chi_{309680}(84947,\cdot)\) \(\chi_{309680}(90043,\cdot)\) \(\chi_{309680}(105723,\cdot)\) \(\chi_{309680}(107083,\cdot)\) \(\chi_{309680}(111003,\cdot)\) \(\chi_{309680}(117483,\cdot)\) \(\chi_{309680}(124147,\cdot)\) \(\chi_{309680}(126683,\cdot)\) \(\chi_{309680}(128067,\cdot)\) \(\chi_{309680}(134523,\cdot)\) \(\chi_{309680}(137083,\cdot)\) \(\chi_{309680}(141003,\cdot)\) \(\chi_{309680}(143747,\cdot)\) \(\chi_{309680}(151587,\cdot)\) \(\chi_{309680}(156867,\cdot)\) \(\chi_{309680}(160787,\cdot)\) \(\chi_{309680}(165883,\cdot)\) \(\chi_{309680}(172363,\cdot)\) \(\chi_{309680}(181563,\cdot)\) \(\chi_{309680}(182947,\cdot)\) \(\chi_{309680}(193323,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((193551,232261,61937,297041,82321)\) → \((-1,i,-i,e\left(\frac{1}{3}\right),e\left(\frac{6}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 309680 }(31243, a) \) \(1\)\(1\)\(e\left(\frac{23}{78}\right)\)\(e\left(\frac{23}{39}\right)\)\(e\left(\frac{73}{156}\right)\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{121}{156}\right)\)\(e\left(\frac{29}{156}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{23}{26}\right)\)\(e\left(\frac{17}{52}\right)\)\(e\left(\frac{53}{78}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 309680 }(31243,a) \;\) at \(\;a = \) e.g. 2