Properties

Label 309680.19371
Modulus $309680$
Conductor $61936$
Order $1092$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(309680, base_ring=CyclotomicField(1092)) M = H._module chi = DirichletCharacter(H, M([546,273,0,520,224]))
 
Copy content pari:[g,chi] = znchar(Mod(19371,309680))
 

Basic properties

Modulus: \(309680\)
Conductor: \(61936\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1092\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{61936}(19371,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 309680.cds

\(\chi_{309680}(11,\cdot)\) \(\chi_{309680}(51,\cdot)\) \(\chi_{309680}(1691,\cdot)\) \(\chi_{309680}(2011,\cdot)\) \(\chi_{309680}(5651,\cdot)\) \(\chi_{309680}(6171,\cdot)\) \(\chi_{309680}(6211,\cdot)\) \(\chi_{309680}(6491,\cdot)\) \(\chi_{309680}(7051,\cdot)\) \(\chi_{309680}(8131,\cdot)\) \(\chi_{309680}(11211,\cdot)\) \(\chi_{309680}(11531,\cdot)\) \(\chi_{309680}(13771,\cdot)\) \(\chi_{309680}(18251,\cdot)\) \(\chi_{309680}(18531,\cdot)\) \(\chi_{309680}(19371,\cdot)\) \(\chi_{309680}(19611,\cdot)\) \(\chi_{309680}(20171,\cdot)\) \(\chi_{309680}(21291,\cdot)\) \(\chi_{309680}(21571,\cdot)\) \(\chi_{309680}(21611,\cdot)\) \(\chi_{309680}(22131,\cdot)\) \(\chi_{309680}(22171,\cdot)\) \(\chi_{309680}(23811,\cdot)\) \(\chi_{309680}(24131,\cdot)\) \(\chi_{309680}(26891,\cdot)\) \(\chi_{309680}(27771,\cdot)\) \(\chi_{309680}(28331,\cdot)\) \(\chi_{309680}(28611,\cdot)\) \(\chi_{309680}(29171,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1092})$
Fixed field: Number field defined by a degree 1092 polynomial (not computed)

Values on generators

\((193551,232261,61937,297041,82321)\) → \((-1,i,1,e\left(\frac{10}{21}\right),e\left(\frac{8}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 309680 }(19371, a) \) \(-1\)\(1\)\(e\left(\frac{339}{364}\right)\)\(e\left(\frac{157}{182}\right)\)\(e\left(\frac{815}{1092}\right)\)\(e\left(\frac{479}{1092}\right)\)\(e\left(\frac{58}{273}\right)\)\(e\left(\frac{25}{52}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{289}{364}\right)\)\(e\left(\frac{631}{1092}\right)\)\(e\left(\frac{25}{78}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 309680 }(19371,a) \;\) at \(\;a = \) e.g. 2