Properties

Label 309680.17
Modulus $309680$
Conductor $19355$
Order $1092$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(309680, base_ring=CyclotomicField(1092)) M = H._module chi = DirichletCharacter(H, M([0,0,273,650,294]))
 
Copy content pari:[g,chi] = znchar(Mod(17,309680))
 

Basic properties

Modulus: \(309680\)
Conductor: \(19355\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(1092\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{19355}(17,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 309680.cfm

\(\chi_{309680}(17,\cdot)\) \(\chi_{309680}(33,\cdot)\) \(\chi_{309680}(817,\cdot)\) \(\chi_{309680}(1937,\cdot)\) \(\chi_{309680}(2033,\cdot)\) \(\chi_{309680}(4177,\cdot)\) \(\chi_{309680}(5073,\cdot)\) \(\chi_{309680}(6177,\cdot)\) \(\chi_{309680}(10657,\cdot)\) \(\chi_{309680}(10993,\cdot)\) \(\chi_{309680}(11233,\cdot)\) \(\chi_{309680}(14577,\cdot)\) \(\chi_{309680}(14593,\cdot)\) \(\chi_{309680}(14913,\cdot)\) \(\chi_{309680}(15713,\cdot)\) \(\chi_{309680}(15937,\cdot)\) \(\chi_{309680}(16817,\cdot)\) \(\chi_{309680}(17713,\cdot)\) \(\chi_{309680}(18513,\cdot)\) \(\chi_{309680}(19633,\cdot)\) \(\chi_{309680}(23873,\cdot)\) \(\chi_{309680}(24897,\cdot)\) \(\chi_{309680}(27233,\cdot)\) \(\chi_{309680}(28577,\cdot)\) \(\chi_{309680}(28817,\cdot)\) \(\chi_{309680}(31153,\cdot)\) \(\chi_{309680}(31377,\cdot)\) \(\chi_{309680}(31617,\cdot)\) \(\chi_{309680}(34513,\cdot)\) \(\chi_{309680}(36433,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1092})$
Fixed field: Number field defined by a degree 1092 polynomial (not computed)

Values on generators

\((193551,232261,61937,297041,82321)\) → \((1,1,i,e\left(\frac{25}{42}\right),e\left(\frac{7}{26}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 309680 }(17, a) \) \(-1\)\(1\)\(e\left(\frac{671}{1092}\right)\)\(e\left(\frac{125}{546}\right)\)\(e\left(\frac{32}{273}\right)\)\(e\left(\frac{199}{364}\right)\)\(e\left(\frac{857}{1092}\right)\)\(e\left(\frac{37}{39}\right)\)\(e\left(\frac{31}{84}\right)\)\(e\left(\frac{307}{364}\right)\)\(e\left(\frac{16}{91}\right)\)\(e\left(\frac{19}{78}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 309680 }(17,a) \;\) at \(\;a = \) e.g. 2