sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(30968, base_ring=CyclotomicField(182))
M = H._module
chi = DirichletCharacter(H, M([91,91,26,49]))
pari:[g,chi] = znchar(Mod(13763,30968))
| Modulus: | \(30968\) | |
| Conductor: | \(30968\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(182\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{30968}(659,\cdot)\)
\(\chi_{30968}(1163,\cdot)\)
\(\chi_{30968}(1779,\cdot)\)
\(\chi_{30968}(2115,\cdot)\)
\(\chi_{30968}(2227,\cdot)\)
\(\chi_{30968}(2283,\cdot)\)
\(\chi_{30968}(2507,\cdot)\)
\(\chi_{30968}(2619,\cdot)\)
\(\chi_{30968}(4299,\cdot)\)
\(\chi_{30968}(4915,\cdot)\)
\(\chi_{30968}(5083,\cdot)\)
\(\chi_{30968}(5307,\cdot)\)
\(\chi_{30968}(6203,\cdot)\)
\(\chi_{30968}(6539,\cdot)\)
\(\chi_{30968}(6651,\cdot)\)
\(\chi_{30968}(6707,\cdot)\)
\(\chi_{30968}(6931,\cdot)\)
\(\chi_{30968}(7043,\cdot)\)
\(\chi_{30968}(8443,\cdot)\)
\(\chi_{30968}(9339,\cdot)\)
\(\chi_{30968}(9731,\cdot)\)
\(\chi_{30968}(10011,\cdot)\)
\(\chi_{30968}(10627,\cdot)\)
\(\chi_{30968}(10963,\cdot)\)
\(\chi_{30968}(11131,\cdot)\)
\(\chi_{30968}(11355,\cdot)\)
\(\chi_{30968}(12867,\cdot)\)
\(\chi_{30968}(13147,\cdot)\)
\(\chi_{30968}(13763,\cdot)\)
\(\chi_{30968}(13931,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((7743,15485,18329,20385)\) → \((-1,-1,e\left(\frac{1}{7}\right),e\left(\frac{7}{26}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(17\) | \(19\) | \(23\) | \(25\) |
| \( \chi_{ 30968 }(13763, a) \) |
\(1\) | \(1\) | \(e\left(\frac{75}{182}\right)\) | \(e\left(\frac{61}{182}\right)\) | \(e\left(\frac{75}{91}\right)\) | \(e\left(\frac{2}{91}\right)\) | \(e\left(\frac{67}{182}\right)\) | \(e\left(\frac{68}{91}\right)\) | \(e\left(\frac{41}{182}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{61}{91}\right)\) |
sage:chi.jacobi_sum(n)