sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3060, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,2,6,9]))
pari:[g,chi] = znchar(Mod(2639,3060))
Modulus: | \(3060\) | |
Conductor: | \(3060\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(12\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{3060}(599,\cdot)\)
\(\chi_{3060}(659,\cdot)\)
\(\chi_{3060}(1679,\cdot)\)
\(\chi_{3060}(2639,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1531,1361,1837,1261)\) → \((-1,e\left(\frac{1}{6}\right),-1,-i)\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 3060 }(2639, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) |
sage:chi.jacobi_sum(n)