sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3060, base_ring=CyclotomicField(16))
M = H._module
chi = DirichletCharacter(H, M([8,8,12,11]))
pari:[g,chi] = znchar(Mod(143,3060))
\(\chi_{3060}(107,\cdot)\)
\(\chi_{3060}(143,\cdot)\)
\(\chi_{3060}(503,\cdot)\)
\(\chi_{3060}(1043,\cdot)\)
\(\chi_{3060}(1187,\cdot)\)
\(\chi_{3060}(1907,\cdot)\)
\(\chi_{3060}(2663,\cdot)\)
\(\chi_{3060}(2987,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1531,1361,1837,1261)\) → \((-1,-1,-i,e\left(\frac{11}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 3060 }(143, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(1\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{8}\right)\) |
sage:chi.jacobi_sum(n)