Properties

Label 3060.143
Modulus $3060$
Conductor $1020$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,8,12,11]))
 
Copy content pari:[g,chi] = znchar(Mod(143,3060))
 

Basic properties

Modulus: \(3060\)
Conductor: \(1020\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1020}(143,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3060.ef

\(\chi_{3060}(107,\cdot)\) \(\chi_{3060}(143,\cdot)\) \(\chi_{3060}(503,\cdot)\) \(\chi_{3060}(1043,\cdot)\) \(\chi_{3060}(1187,\cdot)\) \(\chi_{3060}(1907,\cdot)\) \(\chi_{3060}(2663,\cdot)\) \(\chi_{3060}(2987,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.300485722255294422685968000000000000.1

Values on generators

\((1531,1361,1837,1261)\) → \((-1,-1,-i,e\left(\frac{11}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 3060 }(143, a) \) \(1\)\(1\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{13}{16}\right)\)\(1\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(e\left(\frac{1}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 3060 }(143,a) \;\) at \(\;a = \) e.g. 2