Properties

Label 305760.fpd
Modulus $305760$
Conductor $305760$
Order $168$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(305760, base_ring=CyclotomicField(168)) M = H._module chi = DirichletCharacter(H, M([0,63,84,84,72,56])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(29,305760)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(305760\)
Conductor: \(305760\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(168\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{168})$
Fixed field: Number field defined by a degree 168 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(11\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\) \(47\)
\(\chi_{305760}(29,\cdot)\) \(-1\) \(1\) \(e\left(\frac{143}{168}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{113}{168}\right)\) \(1\) \(e\left(\frac{155}{168}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{103}{168}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{305760}(3389,\cdot)\) \(-1\) \(1\) \(e\left(\frac{55}{168}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{121}{168}\right)\) \(1\) \(e\left(\frac{163}{168}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{143}{168}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{305760}(10949,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{168}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{83}{168}\right)\) \(1\) \(e\left(\frac{41}{168}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{37}{168}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{305760}(21869,\cdot)\) \(-1\) \(1\) \(e\left(\frac{131}{168}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{53}{168}\right)\) \(1\) \(e\left(\frac{95}{168}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{139}{168}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{305760}(25229,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{168}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{61}{168}\right)\) \(1\) \(e\left(\frac{103}{168}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{11}{168}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{305760}(32789,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{168}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{23}{168}\right)\) \(1\) \(e\left(\frac{149}{168}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{73}{168}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{305760}(36149,\cdot)\) \(-1\) \(1\) \(e\left(\frac{121}{168}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{31}{168}\right)\) \(1\) \(e\left(\frac{157}{168}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{113}{168}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{305760}(47069,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{168}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{1}{168}\right)\) \(1\) \(e\left(\frac{43}{168}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{47}{168}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{305760}(54629,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{168}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{131}{168}\right)\) \(1\) \(e\left(\frac{89}{168}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{109}{168}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{305760}(57989,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{168}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{139}{168}\right)\) \(1\) \(e\left(\frac{97}{168}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{149}{168}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{305760}(65549,\cdot)\) \(-1\) \(1\) \(e\left(\frac{107}{168}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{101}{168}\right)\) \(1\) \(e\left(\frac{143}{168}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{43}{168}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{305760}(68909,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{168}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{109}{168}\right)\) \(1\) \(e\left(\frac{151}{168}\right)\) \(e\left(\frac{11}{84}\right)\) \(e\left(\frac{83}{168}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{305760}(76469,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{168}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{31}{84}\right)\) \(e\left(\frac{71}{168}\right)\) \(1\) \(e\left(\frac{29}{168}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{145}{168}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{305760}(79829,\cdot)\) \(-1\) \(1\) \(e\left(\frac{97}{168}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{79}{168}\right)\) \(1\) \(e\left(\frac{37}{168}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{17}{168}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{305760}(87389,\cdot)\) \(-1\) \(1\) \(e\left(\frac{95}{168}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{41}{168}\right)\) \(1\) \(e\left(\frac{83}{168}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{79}{168}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{305760}(98309,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{168}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{11}{168}\right)\) \(1\) \(e\left(\frac{137}{168}\right)\) \(e\left(\frac{25}{84}\right)\) \(e\left(\frac{13}{168}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{305760}(101669,\cdot)\) \(-1\) \(1\) \(e\left(\frac{85}{168}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{71}{84}\right)\) \(e\left(\frac{19}{168}\right)\) \(1\) \(e\left(\frac{145}{168}\right)\) \(e\left(\frac{5}{84}\right)\) \(e\left(\frac{53}{168}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{305760}(109229,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{168}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{149}{168}\right)\) \(1\) \(e\left(\frac{23}{168}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{115}{168}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{305760}(112589,\cdot)\) \(-1\) \(1\) \(e\left(\frac{163}{168}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{65}{84}\right)\) \(e\left(\frac{157}{168}\right)\) \(1\) \(e\left(\frac{31}{168}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{155}{168}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{305760}(123509,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{168}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{59}{84}\right)\) \(e\left(\frac{127}{168}\right)\) \(1\) \(e\left(\frac{85}{168}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{89}{168}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{305760}(131069,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{168}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{84}\right)\) \(e\left(\frac{89}{168}\right)\) \(1\) \(e\left(\frac{131}{168}\right)\) \(e\left(\frac{19}{84}\right)\) \(e\left(\frac{151}{168}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{305760}(134429,\cdot)\) \(-1\) \(1\) \(e\left(\frac{151}{168}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{97}{168}\right)\) \(1\) \(e\left(\frac{139}{168}\right)\) \(e\left(\frac{83}{84}\right)\) \(e\left(\frac{23}{168}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{305760}(141989,\cdot)\) \(-1\) \(1\) \(e\left(\frac{149}{168}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{79}{84}\right)\) \(e\left(\frac{59}{168}\right)\) \(1\) \(e\left(\frac{17}{168}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{85}{168}\right)\) \(e\left(\frac{13}{14}\right)\)
\(\chi_{305760}(145349,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{168}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{67}{168}\right)\) \(1\) \(e\left(\frac{25}{168}\right)\) \(e\left(\frac{53}{84}\right)\) \(e\left(\frac{125}{168}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{305760}(152909,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{168}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{73}{84}\right)\) \(e\left(\frac{29}{168}\right)\) \(1\) \(e\left(\frac{71}{168}\right)\) \(e\left(\frac{43}{84}\right)\) \(e\left(\frac{19}{168}\right)\) \(e\left(\frac{9}{14}\right)\)
\(\chi_{305760}(156269,\cdot)\) \(-1\) \(1\) \(e\left(\frac{139}{168}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{41}{84}\right)\) \(e\left(\frac{37}{168}\right)\) \(1\) \(e\left(\frac{79}{168}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{59}{168}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{305760}(163829,\cdot)\) \(-1\) \(1\) \(e\left(\frac{137}{168}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{167}{168}\right)\) \(1\) \(e\left(\frac{125}{168}\right)\) \(e\left(\frac{13}{84}\right)\) \(e\left(\frac{121}{168}\right)\) \(e\left(\frac{5}{14}\right)\)
\(\chi_{305760}(174749,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{168}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{61}{84}\right)\) \(e\left(\frac{137}{168}\right)\) \(1\) \(e\left(\frac{11}{168}\right)\) \(e\left(\frac{67}{84}\right)\) \(e\left(\frac{55}{168}\right)\) \(e\left(\frac{1}{14}\right)\)
\(\chi_{305760}(178109,\cdot)\) \(-1\) \(1\) \(e\left(\frac{127}{168}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{29}{84}\right)\) \(e\left(\frac{145}{168}\right)\) \(1\) \(e\left(\frac{19}{168}\right)\) \(e\left(\frac{47}{84}\right)\) \(e\left(\frac{95}{168}\right)\) \(e\left(\frac{3}{14}\right)\)
\(\chi_{305760}(185669,\cdot)\) \(-1\) \(1\) \(e\left(\frac{125}{168}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{55}{84}\right)\) \(e\left(\frac{107}{168}\right)\) \(1\) \(e\left(\frac{65}{168}\right)\) \(e\left(\frac{37}{84}\right)\) \(e\left(\frac{157}{168}\right)\) \(e\left(\frac{11}{14}\right)\)
\(\chi_{305760}(189029,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{168}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{23}{84}\right)\) \(e\left(\frac{115}{168}\right)\) \(1\) \(e\left(\frac{73}{168}\right)\) \(e\left(\frac{17}{84}\right)\) \(e\left(\frac{29}{168}\right)\) \(e\left(\frac{13}{14}\right)\)